
Chapter 3

The Block Cipher IDEA

The block cipher IDEA (for International Data Encryption Algorithm) was �rst pre-

sented by us in [32]; its previous version PES (for Proposed Encryption Standard)

was proposed in [31]. In both ciphers, the plaintext and the ciphertext are 64 bit

blocks, while the secret key is 128 bits long. Both ciphers were based on the new

design concept of \mixing operations from di�erent algebraic groups". The required

\confusion" was achieved by successively using three \incompatible" group opera-

tions on pairs of 16-bit subblocks and the cipher structure was chosen to provide

the necessary \di�usion". The cipher structure was further chosen to facilitate both

hardware and software implementations. The IDEA cipher is an improved version

of PES and was developed to increase the security against di�erential cryptanalysis.

3.1 Description of IDEA

The cipher IDEA is an iterated cipher consisting of 8 rounds followed by an out-

put transformation. The complete �rst round and the output transformation are

depicted in the computational graph shown in Fig.3.1.

3.1.1 The encryption process

In the encryption process shown in Fig.3.1, three di�erent group operations on pairs

of 16-bit subblocks are used, namely,

{ bit-by-bit exclusive-OR of two 16-bit subblocks, denoted as

L

;

{ addition of integers modulo 2

16

where the 16-bit subblock is treated as the usual

radix-two representation of an integer; the resulting operation is denoted as
+
;

21

22 CH. 3. THE BLOCK CIPHER IDEA

X

1

X

2

X

3

X

4

? ? ? ?

Z

(1)

1

Z

(1)

2

Z

(1)

3

Z

(1)

4

- - - -

J J

+ +

? ?

? ?

L

L

r

r

-

-

r

r

�

�

J

J

+

+

? ?

? ?

-

�

-

�

Z

(1)

5

Z

(1)

6

-�

-�

L

L

L

L

r

r

? ?

h

h

h

h

h

h

h

h

h

h

h

h

h

(

(

(

(

(

(

(

(

(

(

(

(

(

? ?

.

.

.

.

.

.

.

.

.

.

.

.

? ?

h

h

h

h

h

h

h

h

h

h

h

h

h

(

(

(

(

(

(

(

(

(

(

(

(

(

? ?

J J

+ +

- - - -

Z

(9)

1

Z

(9)

2

Z

(9)

3

Z

(9)

4

? ? ? ?

Y

1

Y

2

Y

3

Y

4

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

one round

)

7 more rounds

9

>

>

=

>

>

;

output

transformation

X

i

: 16-bit plaintext subblock

Y

i

: 16-bit ciphertext subblock

Z

(r)

i

: 16-bit key subblock

L

: bit-by-bit exclusive-OR of 16-bit subblocks

+ : addition modulo 2

16

of 16-bit integers

J

: multiplication modulo 2

16

+ 1 of 16-bit integers

with the zero subblock corresponding to 2

16

Figure 3.1: Computational graph for the encryption process of the IDEA cipher.

3.1. DESCRIPTION OF IDEA 23

{ multiplication of integers modulo 2

16

+1 where the 16-bit subblock is treated as the

usual radix-two representation of an integer except that the all-zero subblock

is treated as representing 2

16

; the resulting operation is denoted as

J

.

As an example of these group operations, note that

(0; :::; 0)

J

(1; 0; :::; 0) = (1; 0; :::; 0; 1)

because

2

16

2

15

mod (2

16

+ 1) = 2

15

+ 1:

The 64-bit plaintext blockX is partitioned into four 16-bit subblocks X

1

; X

2

; X

3

;

X

4

; i.e., X = (X

1

;X

2

;X

3

;X

4

). The four plaintext subblocks are then transformed

into four 16-bit ciphertext subblocks Y

1

; Y

2

; Y

3

; Y

4

[i.e., the ciphertext block is

Y = (Y

1

; Y

2

; Y

3

; Y

4

)] under the control of 52 key subblocks of 16 bits that are formed

from the 128-bit secret key in a manner to be described below. For r = 1; 2; : : : ; 8,

the six key subblocks used in the r-th round will be denoted as Z

(r)

1

; ::; Z

(r)

6

: Four

16-bit key subblocks are used in the output transformation; these subblocks will be

denoted as Z

(9)

1

; Z

(9)

2

; Z

(9)

3

; Z

(9)

4

.

3.1.2 The decryption process

The computational graph of the decryption process is essentially the same as that

of the encryption process (cf. Sec.3.4.1), the only change being that the decryption

key subblocks K

(r)

i

are computed from the encryption key subblocks Z

(r)

i

as follows:

(K

(r)

1

;K

(r)

2

;K

(r)

3

;K

(r)

4

)= (Z

(10�r)

1

�1

;�Z

(10�r)

3

;�Z

(10�r)

2

; Z

(10�r)

4

�1

) for r=2,3,..,8;

(K

(r)

1

;K

(r)

2

;K

(r)

3

;K

(r)

4

)= (Z

(10�r)

1

�1

;�Z

(10�r)

2

;�Z

(10�r)

3

; Z

(10�r)

4

�1

) for r=1 and 9;

(K

(r)

5

;K

(r)

6

)= (Z

(r)

5

; Z

(r)

6

) for r=1,2,..,8;

where Z

�1

denotes the multiplicative inverse (modulo 2

16

+1) of Z, i.e., Z

J

Z

�1

= 1

and �Z denotes the additive inverse (modulo 2

16

) of Z, i.e., �Z+Z = 0.

The computation of decryption key subblocks from the encryption key subblocks

is also shown in table 3.1.

3.1.3 The key schedule

The 52 key subblocks of 16 bits used in the encryption process are generated from

the 128-bit user-selected key as follows: The 128-bit user-selected key is partitioned

into 8 subblocks that are directly used as the �rst eight key subblocks, where the

ordering of the key subblocks is de�ned as follows: Z

(1)

1

,Z

(1)

2

,..,Z

(1)

6

, Z

(2)

1

,..,Z

(2)

6

,..,

24 CH. 3. THE BLOCK CIPHER IDEA

Encryption key subblocks Decryption key subblocks

1-st Z

(1)

1

Z

(1)

2

Z

(1)

3

Z

(1)

4

1-st Z

(9)

1

�1

� Z

(9)

2

� Z

(9)

3

Z

(9)

4

�1

round Z

(1)

5

Z

(1)

6

round Z

(8)

5

Z

(8)

6

2-nd Z

(2)

1

Z

(2)

2

Z

(2)

3

Z

(2)

4

2-nd Z

(8)

1

�1

� Z

(8)

3

� Z

(8)

2

Z

(8)

4

�1

round Z

(2)

5

Z

(2)

6

round Z

(7)

5

Z

(7)

6

3-rd Z

(3)

1

Z

(3)

2

Z

(3)

3

Z

(3)

4

3-rd Z

(7)

1

�1

� Z

(7)

3

� Z

(7)

2

Z

(7)

4

�1

round Z

(3)

5

Z

(3)

6

round Z

(6)

5

Z

(6)

6

4-th Z

(4)

1

Z

(4)

2

Z

(4)

3

Z

(4)

4

4-th Z

(6)

1

�1

� Z

(6)

3

� Z

(6)

2

Z

(6)

4

�1

round Z

(4)

5

Z

(4)

6

round Z

(5)

5

Z

(5)

6

5-th Z

(5)

1

Z

(5)

2

Z

(5)

3

Z

(5)

4

5-th Z

(5)

1

�1

� Z

(5)

3

� Z

(5)

2

Z

(5)

4

�1

round Z

(5)

5

Z

(5)

6

round Z

(4)

5

Z

(4)

6

6-th Z

(6)

1

Z

(6)

2

Z

(6)

3

Z

(6)

4

6-th Z

(4)

1

�1

� Z

(4)

3

� Z

(4)

2

Z

(4)

4

�1

round Z

(6)

5

Z

(6)

6

round Z

(3)

5

Z

(3)

6

7-th Z

(7)

1

Z

(7)

2

Z

(7)

3

Z

(7)

4

7-th Z

(3)

1

�1

� Z

(3)

3

� Z

(3)

2

Z

(3)

4

�1

round Z

(7)

5

Z

(7)

6

round Z

(2)

5

Z

(2)

6

8-th Z

(8)

1

Z

(8)

2

Z

(8)

3

Z

(8)

4

8-th Z

(2)

1

�1

� Z

(2)

3

� Z

(2)

2

Z

(2)

4

�1

round Z

(8)

5

Z

(8)

6

round Z

(1)

5

Z

(1)

6

output Z

(9)

1

Z

(9)

2

Z

(9)

3

Z

(9)

4

output Z

(1)

1

�1

� Z

(1)

2

� Z

(1)

3

Z

(1)

4

�1

transform. transform.

Table 3.1: The encryption and decryption key subblocks.

3.2. GROUP OPERATIONS AND THEIR INTERACTION 25

Z

(8)

1

,..,Z

(8)

6

, Z

(9)

1

,Z

(9)

2

,Z

(9)

3

,Z

(9)

4

. The 128-bit user-selected key is then cyclic shifted

to the left by 25 positions, after which the resulting 128-bit block is again partitioned

into eight subblocks that are taken as the next eight key subblocks. The obtained

128-bit block is again cyclic shifted to the left by 25 positions to produce the next

eight key subblocks, and this procedure is repeated until all 52 key subblocks have

been generated.

3.2 Group Operations and their Interaction

The IDEA cipher is based on the new design concept of mixing operations from dif-

ferent algebraic groups having the same number of elements. Group operations were

chosen because the statistical relation of any three random variables U; V;W related

by a group operation as W = U � V has the \perfect secrecy" property that if any

one of the three random variables is chosen independently of the others and equally

likely to be any group element, then the other two random variables are statistically

independent. The interaction of the di�erent group operations contributes to the

\confusion" required for a secure cipher, as will be explained in the following two

sections.

The interaction of the di�erent group operations will now be considered in terms

of isotopism of quasigroups and in terms of polynomial expressions. To generalize

the discussion beyond the case of 16-bit subblocks, let n be one of the integers

1,2,4,8 or 16 so that the integer 2

n

+ 1 is a prime, and let ZZ

2

n

denote the ring of

integers modulo 2

n

. Let (ZZ

�

2

n

+1

; �) denote the multiplicative group of the non-zero

elements of the �eld ZZ

2

n

+1

, let (ZZ

2

n

;+) denote the additive group of the ring ZZ

2

n

,

and let (

IF

n

2

;

L

) denote the group of n-tuples over

IF

2

under the bitwise exclusive-or

operation. De�ne the direct mapping d from ZZ

�

2

n

+1

onto ZZ

2

n

as

d(i) = i for i 6= 2

n

and d(2

n

) = 0: (3:1)

3.2.1 The three operations as quasigroup operations

Let S be a non-empty set and let � denote an operation from pairs (a; b) of elements

of S to an element a � b of S. Then (S; �) is said to be a quasigroup if, for all a

and b in S, the equations a � x = b and y � a = b both have exactly one solution

in S. A group is a quasigroup in which the operation is associative, i.e., for which

a � (b � c) = (a � b) � c for all a; b and c in S. The quasigroups (S

1

; �

1

) and (S

2

; �

2

)

are said to be isotopic if there are bijective mappings �; �; : S

1

! S

2

, such that,

�(x) �

2

�(y) = (x �

1

y) for all x and y in S

1

:

26 CH. 3. THE BLOCK CIPHER IDEA

Such a triple (�; �;) of bijections is called an isotopism of (S

1

; �

1

) onto (S

2

; �

2

).

Two groups are said to be isomorphic if they are isotopic as quasigroups and the

isotopism has the form (�; �; �). It can be shown that two groups are isomorphic

if and only if they are isotopic [18]. Note that every isomorphism between two

groups is also an isotopism, but the converse is not true in general. In general for

two isomorphic groups, there will be many more isotopisms between these groups

than there will be isomorphisms. For this reason, we consider isotopisms rather

than isomorphisms although our objects are all groups. The following theorem

states some \incompatibility" properties of the three groups (

IF

n

2

;

L

), (ZZ

2

n

;+) and

(ZZ

�

2

n

+1

; �) when n � 2.

Theorem 2 For n 2 f1; 2; 4; 8; 16g:

1) The quasigroups (

IF

n

2

;

L

) and (ZZ

2

n

;+) are not isotopic for n � 2.

2) The quasigroups (

IF

n

2

;

L

) and (ZZ

�

2

n

+1

; �) are not isotopic for n � 2.

3) The triple (�; �;) of bijections from ZZ

�

2

n

+1

to ZZ

2

n

is an isotopism of (ZZ

�

2

n

+1

; �)

onto (ZZ

2

n

;+) if and only if there exist c

1

and c

2

in ZZ

2

n

and a generator � of the

cyclic group ZZ

�

2

n

+1

such that, for all x in ZZ

�

2

n

+1

,

�(x)� c

1

= �(x)� c

2

= (x)� (c

1

+ c

2

) = log

�

(x); (3:2)

i.e., any isotopism between these groups is essentially the discrete logarithm. More-

over, when n � 2, none of the three bijections in an isotopism (�; �;) from ZZ

�

2

n

+1

onto ZZ

2

n

can be the direct mapping d de�ned in (3.1).

Proof.

1) For n � 2, the groups (

IF

n

2

;

L

) and (ZZ

2

n

;+) are not isomorphic because (ZZ

2

n

;+)

is a cyclic group while (

IF

n

2

;

L

) is not. Thus, they are not isotopic as quasigroups.

2) (ZZ

�

2

n

+1

; �) and (ZZ

2

n

;+) are isomorphic groups for n = 1; 2; 4; 8; 16 because both

groups are cyclic. Thus, (ZZ

�

2

n

+1

; �) is isotopic to (

IF

n

2

;

L

) if and only if (ZZ

2

n

;+) is

isotopic to (

IF

n

2

;

L

), which is not the case for n � 2.

3) Suppose that (�; �;) satis�es (3.2) for all x in ZZ

�

2

n

+1

, then for every x and y in

ZZ

�

2

n

+1

,

 (x � y) = log

�

(x � y) + c

1

+ c

2

= log

�

(x) + log

�

(y) + c

1

+ c

2

= �(x) + �(y):

Thus, (�; �;) is indeed an isotopism.

Conversely, if (�; �;) is an isotopism from (ZZ

�

2

n

+1

; �) onto (ZZ

2

n

;+), then for all

x and y in ZZ

�

2

n

+1

, �(x)+�(y) = (x�y). Let �

1

(x) = �(x)��(1); �

1

(x) = �(x)��(1)

and

1

(x) = (x)� (1), then (�

1

; �

1

;

1

) is also an isotopism from (ZZ

�

2

n

+1

; �) onto

3.2. GROUP OPERATIONS AND THEIR INTERACTION 27

(ZZ

2

n

;+) as is easily checked. Moreover, �

1

(1) = �

1

(1) =

1

(1) = 0. In the isotopism

equation

�

1

(x) + �

1

(y) =

1

(x � y); (3:3)

setting x to 1 results in �

1

(y) =

1

(y) for all y in ZZ

�

2

n

+1

; and then setting y to 1

in (3.3) results in �

1

(x) =

1

(x) for all x in ZZ

�

2

n

+1

: Thus, the three mappings �

1

, �

1

and

1

are identical. Equation (3.3) can thus be written as

1

(x � y) =

1

(x) +

1

(y): (3:4)

Let � be the element of ZZ

�

2

n

+1

such that

1

(�) = 1, then (3.4) implies that

1

(�

i

) = i

for i = 1; 2; ::2

n

� 1 and

1

(�

2

n

) = 0: This implies that � is a generator of the cyclic

group (ZZ

�

2

n

+1

; �) and that

1

(x) = log

�

(x) for all x in ZZ

�

2

n

+1

. Letting c

1

= �(1) and

c

2

= �(1), we arrive at (3.2).

Finally, if (�; �;) is an isotopism from (ZZ

�

2

n

+1

; �) onto (ZZ

2

n

;+) and one of the

mappings �, � and is the direct mapping d, then there exist c in ZZ

2

n

and � in

ZZ

�

2

n

+1

such that

d(x) = log

�

(x) + c for all x in ZZ

�

2

n

+1

: (3:5)

But then d(1) = 1 implies that 1 = log

�

(1) + c = c so that d(x) = log

�

(x) + 1:

Moreover, for n � 2, d(2) = 2; which implies that 2 = log

a

(2) + 1 so that � = 2.

But then d(2

n

) = 0 implies that log

2

(2

n

) + 1 = n + 1 = 0 which is a contradiction

because n < 2

n

� 1 for n � 2. Thus, none of the mappings �, � and can be the

direct mapping d if n � 2. 2

3.2.2 Polynomial expressions for multiplication and addi-

tion

In the encryption process of the cipher IDEA, multiplication modulo 2

n

+ 1 and

addition modulo 2

n

are related via the direct mapping d and its inverse d

�1

. More

precisely, multiplication modulo 2

n

+ 1 induces the function g : ZZ

2

n

� ZZ

2

n

! ZZ

2

n

de�ned by

g(x; y) = d[(d

�1

(x) � d

�1

(y)) mod (2

n

+ 1)] for all x and y in ZZ

2

n

: (3:6)

Note that g(x; y) is the function that we denoted as x

J

y in Section 3.1.1. Similarly,

addition modulo 2

n

(the operation
+
) induces a function f

�

: ZZ

�

2

n

+1

�ZZ

�

2

n

+1

! ZZ

�

2

n

+1

de�ned as

f

�

(x; y) = d

�1

[(d(x) + d(y)) mod 2

n

] for all x and y in ZZ

�

2

n

+1

: (3:7)

28 CH. 3. THE BLOCK CIPHER IDEA

We can and do extend the function f

�

to a function f : ZZ

2

n

+1

� ZZ

2

n

+1

! ZZ

2

n

+1

as

follows:

f(x; y) =

(

d

�1

[(d(x) + d(y)) mod 2

n

] for all x and y in ZZ

�

2

n

+1

0 otherwise.

(3:8)

For example, when n = 1, the function f induced by addition modulo 2 is

f(x; y) = 2xy mod 3 for all x and y in ZZ

3

:

Similarly, the function g induced by multiplication modulo 3 is

g(x; y) = x+ y + 1 mod 2 for all x and y in ZZ

2

:

In what follows in this section, we show the \nonlinearity" of the function f over

the �eld ZZ

2

n

+1

and the \nonlinearity" of the function g over the ring ZZ

2

n

in terms

of their polynomial expressions when n � 2.

Theorem 3 For n 2 f2; 4; 8; 16g :

For every a in ZZ

2

n

+1

� f0; 2

n

g; the function f(a; y) is a polynomial in y over the

�eld ZZ

2

n

+1

with degree 2

n

�1: Similarly, for every a in ZZ

2

n

+1

�f0; 2

n

g; the function

f(x; a) is a polynomial in x over ZZ

2

n

+1

with degree 2

n

� 1.

Example 3 For n = 2, the function f(x; y) over ZZ

5

induced by addition modulo

4 is

f(x; y) = 3(x

3

y

2

+ x

2

y

3

) + 3(x

3

y + xy

3

) + 2x

2

y

2

+ 4(x

2

y + xy

2

):

Proof of Theorem 3. For any �nite �eld

IF

= GF (q) and for every � in

IF

�

=

GF (q)� f0g,

(��)

Y

�2

IF

�

�f�g

(x� �) =

(

1 x = � or x = 0

0 otherwise,

(3:9)

as follows from the fact that, in any �nite �eld, the product of all non-zero elements

equals �1 so that

(��)

Y

�2

IF

�

�f�g

(�� �) = �

Y

�2

IF

�

� = 1:

Thus, every function h(�) from

IF

to

IF

can be written as a polynomial over

IF

of

degree at most q � 1 as follows:

h(x) =

X

�2

IF

�

h(�)(��)

Y

�2

IF

�

�f�g

(x� �) + (x

q�1

� 1)[h(0)�

X

�2

IF

�

h(�)]: (3:10)

3.2. GROUP OPERATIONS AND THEIR INTERACTION 29

Note that f(0; y) = 0 for all y in

IF

, and that f(a; �) for every a 6= 0 is a bijection

from

IF

�

to

IF

�

, so that

X

�2

IF

�

f(a; �) =

X

�2

IF

�

� = 0 for every a 6= 0 and for

IF

6= GF (2):

From the de�nition of f(x; y) and from equation (3.10), the function f(a; y) can be

written for every a 6= 0 as

f(a; y) =

(

a+ y 1 � y � 2

n

� a

a+ y + 1 2

n

� a < y � 2

n

=

2

n

�a

X

i=1

(a+ i)(�i)

Y

j 6=i

1�j�2

n

(y � j) +

2

n

X

i=2

n

�a+1

(a+ i+ 1)(�i)

Y

j 6=i

1�j�2

n

(y � j)

=

2

n

X

i=1

(a+ i)(�i)

Y

j 6=i

1�j�2

n

(y � j) +

2

n

X

i=2

n

�a+1

(�i)

Y

j 6=i

1�j�2

n

(y � j):

That is, the function f(a; y) is a polynomial in y with degree at most 2

n

� 1.

Moreover, the coe�cient of y

2

n

�1

in f(a; y) is

2

n

X

i=1

(a+ i)(�i) +

2

n

X

i=2

n

�a+1

(�i) = �a

2

n

X

i=1

i�

2

n

X

i=1

i

2

+

�1

X

i=�a

(�i)

=

�1

X

i=�a

(�i) =

a

X

i=1

i =

a(a+ 1)

2

;

which is zero if and only if a = 0 or a = �1 = 2

n

, which cases are excluded by

hypothesis. (We have used the facts that

P

2

n

i=1

i = 0 mod (2

n

+ 1), that

P

2

n

i=1

i

2

=

1

6

2

n

(2

n

+1)(2� 2

n

+1), that 2j2

n

, and that 3j2� 2

n

+ 1 for n 2 f2; 4; 8; 16g so that

P

2

n

i=1

i

2

= 0 mod (2

n

+1):) Thus, we have shown that the degree of the polynomial

f(a; y) is indeed 2

n

� 1.

Note that f(x; y) = f(y; x) for all x and y in ZZ

2

n

+1

so that, for every a =2 f0; 2

n

g,

f(x; a) is a polynomial in x of degree 2

n

� 1. 2

Theorem 4 If n 2 f2; 4; 8; 16g, then, for every a in ZZ

2

n

� f0; 1g, the function

g(a; x) = a

J

x = x

J

a cannot be written as a polynomial in x over the ring ZZ

2

n

:

We show �rst the following lemma:

Lemma 1 If p(x) is a polynomial over ZZ

2

n

; then, for all � in ZZ

2

n

;

p(2�) mod 2 = p(0) mod 2:

30 CH. 3. THE BLOCK CIPHER IDEA

Proof. Let p(x) = a

k

x

k

+ a

k�1

x

k�1

+ � � �+ a

1

x+ a

0

:

Then for all � in ZZ

2

n

,

p(2�) = a

k

(2�)

k

+ a

k�1

(2�)

k�1

+ � � �+ a

1

2� + a

0

:

Thus, p(2x) mod 2 = a

0

mod 2 = f(0) mod 2: 2

Proof of Theorem 4 Let n > 1; then for every integer a, 1 < a < 2

n

, there exists

an integer x

0

2 f1; 2; : : : ; 2

n

g such that the following three inequalities all satis�ed:

2

n

+ 1 < 2ax

0

< 2(2

n

+ 1); (3:11)

0 � 2a(x

0

� 1) < 2

n

+ 1 (3:12)

and

0 � 2x

0

� 2

n

: (3:13)

Inequality (3.11) is equivalent to the inequality 0 < 2ax

0

� (2

n

+ 1) < 2

n

+ 1 with

the condition that 2ax

0

� (2

n

+1) is an odd integer. Because of (3.13) and from the

de�nition of the function g,

g(a; 2x

0

) = a

J

(2x

0

) = 2ax

0

� (2

n

+ 1):

Thus,

g(a; 2x

0

) mod 2 = (2ax

0

� (2

n

+ 1)) mod 2 = 1:

On the other hand, inequality (3.12) implies that 2a(x

0

� 1) is an even integer in

f0; 1; ::; 2

n

g so that

g(a; (2(x

0

� 1)) mod 2 = 2a(x

0

� 1) mod 2 = 0:

Hence, it follows from Lemma 1 that g(a; x) = a

J

x is not a polynomial over ZZ

2

n

.

2

3.3 Security Features of IDEA

In this section, we state some provable security features of the IDEA cipher. The

security of the IDEA cipher against di�erential cryptanalysis will be discussed in

detail in Chapter 5.

3.3. SECURITY FEATURES OF IDEA 31

3.3.1 Confusion

The confusion (see page 12) required for a secure cipher is achieved in the IDEA

cipher by mixing three incompatible group operations. In the computational graph

of the encryption process for IDEA, the three di�erent group operations are so

arranged that the output of an operation of one type is never used as the input to

an operation of the same type.

The three operations are incompatible in the sense that:

1. No pair of the 3 operations satis�es a \distributive" law. For instance, for the

operations

J

and +, there exist a, b, and c in

IF

16

2

, such that,

a+(b

J

c) 6= (a+b)

J

(a+c):

For example, when a = b = c = 1 = (0; 0; ::; 0; 1), the left side of the above inequality

is 2 = (0; 0; ::; 0; 1; 0), while the right side equals 4 = (0; 0; ::; 0; 1; 0; 0).

2. No pair of the 3 operations satis�es a \generalized associative" law. For in-

stance, for the operations
+

and

L

, there exist a, b, and c in

IF

16

2

, such that,

a+(b

L

c) 6= (a+b)

L

c:

For example, for a = b = c = 1 = (0; 0; :::0; 1) in

IF

16

2

, the left side of the above

inequality is 1 = (0; 0; :::0; 1), while the right side equals 3 = (0; 0; ::; 0; 1; 1). Thus,

one cannot arbitrarily change the order of operations to simplify analysis.

3. The 3 operations are connected by the direct mapping d and its inverse, which

inhibits isotopisms as was shown in Theorem 2. The cryptographic signi�cance of

this fact is that, if there were an isotopism between two operations, then one could

replace one operation with the other by applying bijective mappings on the inputs

and on the output. It follows from Theorem 2 that (

IF

16

2

;

J

) and (

IF

16

2

;

L

) are

not isotopic and that (

IF

16

2

;
+
) and (

IF

16

2

;

L

) are not isotopic. The isotopism from

(

IF

16

2

;

J

) onto (

IF

16

2

;+) is essentially the discrete logarithm, which , as shown in

Theorem 2, cannot be the direct mapping d. Moreover, the discrete logarithm is

generally considered to be a \complex" function.

4. Under the direct mapping d and its inverse d

�1

, it is possible to consider the

operations

J

and + as acting on the same set (either in the ring ZZ

2

n

or in the �eld

ZZ

2

n

+1

). However, by doing so, we must analyze some highly non-linear functions in

32 CH. 3. THE BLOCK CIPHER IDEA

the sense that multiplication modulo 2

16

+1, which is a bilinear function over ZZ

2

16

+1

,

corresponds to a non-polynomial function over ZZ

2

16
, as was shown in Theorem 4.

Similarly, addition modulo 2

16

, which is an a�ne function in each argument over

ZZ

2

16

, corresponds to a two variable polynomial of degree 2

16

� 1 in each variable

over ZZ

2

16

+1

, as was shown in Theorem 3. [Note that every function h from ZZ

2

16

+1

to ZZ

2

16

+1

is a polynomial of degree at most 2

16

. Moreover, if such a function is

invertible then its degree is at most 2

16

�1 as follows from (3.10) and from the facts

that function h(x) is invertible if and only if function h(x) � h(0) is invertible and

that these two functions have the same degree].

3.3.2 Di�usion

A check by direct computation has shown that the round function is \complete", i.e.,

that each output bit of the �rst round depends on every bit of the plaintext and on

every bit of the key used for that round. This di�usion is provided in the IDEA ci-

pher by the transformation called the multiplication-addition (MA) structure whose

computational graph is shown in Fig.3.2. The MA structure transforms two 16 bit

subblocks into two 16 bit subblocks controlled by two 16 bit key subblocks. This

structure has the following properties:

U

1

U

2

? ?

J

+
Z

5

- -

? ?

J

+
Z

6

��

? ?

V

1

V

2

Figure 3.2: Computational graph of the MA structure.

{ for any choice of the key subblocks Z

5

and Z

6

, MA(�; �; Z

5

; Z

6

) is an invertible

transformation; for any choice of U

1

and U

2

, MA(U

1

; U

2

; �; �) is also an invert-

ible transformation;

{ this structure has a \complete di�usion" e�ect in the sense that each output

subblock depends on every input subblock, and

3.3. SECURITY FEATURES OF IDEA 33

{ this structure uses the least number of operations (four) required to achieve

such complete di�usion. [To give a formal proof of this property, we need the

following de�nitions.

An operation is a mapping from two variables to one variable. A computational

graph of a function is a directed graph in which the vertices are operations,

the edges entering a vertex are the inputs to the operation, the edges leaving a

vertex are the output variable of the operation, the edges entering no vertex are

the output variables, and the edges leaving no vertex are the inputs variables.

An algorithm to compute a function determines a computational graph where

the input variables are the input to the algorithm and the output variables are

the outputs of the algorithm.

Consider a function having the form

(Y

1

; Y

2

) = E(X

1

;X

2

; Z

1

; Z

2

); X

i

; Y

i

2

IF

n

2

; Z

i

2

IF

k

2

(3:14)

and such that, for every choice of (Z

1

; Z

2

), E(�; �; Z

1

; Z

2

) is invertible. Such a

function will be called a 2-block cipher. A 2-block cipher will be said to have

complete di�usion if each of its output variable depends non-idly on every

input variable.

Lemma 2 If a 2-block cipher of the form (3.14) has complete di�usion, then

the computational graph determined by any algorithm that computes the ci-

pher function contains at least 4 operations.

Proof. Let Y

1

= E

1

(X

1

;X

2

; Z

1

; Z

2

); and Y

2

= E

2

(X

1

;X

2

; Z

1

; Z

2

): Because E

1

has complete di�usion, its computational graph contains at least 3 operations

because this function has four input variables. Suppose E

1

contains exactly

3 operations. The invertibility of the 2-block cipher implies that E

2

6= E

1

and complete di�usion requires that E

2

not equal any intermediate result that

appears in E

1

: Thus, at least one operation not appearing in E

1

is required in

the computational graph of E

2

. This proves the lemma.]

3.3.3 Perfect secrecy for a \one-time" key

Perfect secrecy (see page 7) in the sense of Shannon is obtained in each round of

encryption if a \one-time" key (see page 7) is used. In fact, such perfect secrecy is

achieved at the input transformation in the �rst round because each operation is a

group operation. In addition, for every choice of (p

1

; p

2

; p

3

; p

4

) and of (q

1

; q

2

; q

3

; q

4

)

34 CH. 3. THE BLOCK CIPHER IDEA

in

IF

64

2

, there are exactly 2

32

di�erent choices of the key subblocks (Z

1

; ::; Z

6

) such

that the �rst round of the cipher transforms (p

1

; p

2

; p

3

; p

4

) into (q

1

; q

2

; q

3

; q

4

).

3.4 Implementations of the Cipher

The cipher IDEA can be easily implemented in software because only basic opera-

tions on pairs of 16-bit subblocks are used in the encryption process. A C-language

program implementing the cipher and some sample data for checking the correctness

of implementation are given in Section 3.4.3. This C-program can achieve data-rates

from about 200 Kbits per second on an IBM-PC to about 3.2 Mbits per second on

a VAX-9000.

The regular modular structure of the cipher facilitates hardware implementa-

tions. The similarity of encryption and decryption for the IDEA cipher, shown in

next section, makes it possible to use the same device in both encryption and de-

cryption. An algorithm for computing the operation

J

is described in Section 3.4.2.

3.4.1 Similarity of encryption and decryption

The similarity of encryption and decryption means that decryption is essentially the

same process as encryption, the only di�erence being that di�erent key subblocks

are used. Thus, the same device can be used for both encryption and decryption,

the only \extra" cost being the pre-computation of the key subblocks from the

128-bit secret key. In the following we show that the round function of the IDEA

cipher has the form (2.2) on page 17, that is, the round function consists of a group

cipher followed by an involution cipher plus an involutary permutation which is an

automorphism of the group (

IF

64

2

;
). Then it follows from Theorem 1 (see page 17)

that IDEA cipher has similarity of encryption and decryption.

For the encryption process of the IDEA cipher shown in Fig.3.1, de�ne

X
 Z

A

= (X

1

J

Z

1

;X

2

+
Z

2

;X

3

+
Z

3

;X

4

J

Z

4

);

then it is easy to see that (

IF

64

2

;
) is a group.

Let P

I

(X) be the permutation on X that interchanges the subblocks X

2

and

X

3

of X = (X

1

;X

2

;X

3

;X

4

) at the end of each round. It is obvious that P

I

is an

involution and that P

I

(X
Z

A

) = P

I

(X)
P

I

(Z

A

); so that P

I

is an automorphism

of the group (

IF

64

2

;
).

It remains to show that the function In(�; Z

B

), shown in Fig.3.3, with the 64-bit

input (S

1

; S

2

; S

3

; S

4

) and the 64-bit output (T

1

; T

2

; T

3

; T

4

) controlled by the 32-bit

3.4. IMPLEMENTATIONS OF THE CIPHER 35

key Z

B

= (Z

5

; Z

6

), is an involution. That is, for any �xed Z

B

, the inverse of the

function In(�; Z

B

) is itself. This self-inverse property is a consequence of the fact

that the exclusive-OR of (S

1

; S

2

) and (S

3

; S

4

) is equal to the exclusive-OR of (T

1

; T

2

)

and (T

3

; T

4

); Thus, the input to the MA structure in Fig. 3.2 is unchanged when S

1

;

S

2

; S

3

and S

4

are replaced by T

1

; T

2

; T

3

and T

4

.

(S

1

; S

2

) (S

3

; S

4

)

? ?

L

r r- �

?

MA

L L

� -

(Z

5

; Z

6

)

6

? ?

(T

1

; T

2

) (T

3

; T

4

)

Figure 3.3: Computational graph of the involution In(�; Z

B

).

3.4.2 Low-High algorithm for multiplication

The most di�cult step in the implementation of the IDEA cipher is the implemen-

tation of multiplication modulo (2

16

+ 1), which can be implemented in the way

suggested by the following lemma.

Lemma 3 [Low-High algorithm for

J

] Let a; b be two n-bit non-zero integers

in ZZ

2

n

+1

, then

ab mod (2

n

+ 1) =

(

(ab mod 2

n

) � (ab div 2

n

) if (ab mod 2

n

) � (ab div 2

n

)

(ab mod 2

n

) � (ab div 2

n

) + 2

n

+ 1 if (ab mod 2

n

) < (ab div 2

n

)

where (ab div 2

n

) denotes the quotient when ab is divided by 2

n

.

Note that (ab mod 2

n

) corresponds to the n least signi�cant bits of ab, and

(ab div 2

n

) is just the right-shift of ab by n bits. Note also that (ab mod 2

n

) =

(ab div 2

n

) implies that ab mod (2

n

+ 1) = 0 and hence cannot occur when 2

n

+ 1

is a prime.

Proof. For any non-zero a and b in ZZ

2

n

+1

, there exist unique integers q and r such

that

ab = q(2

n

+ 1) + r; 0 � r < 2

n

+ 1; 0 � q < 2

n

:

36 CH. 3. THE BLOCK CIPHER IDEA

Moreover, q + r < 2

n+1

: Note that r = ab mod (2

n

+ 1): We have

(ab div 2

n

) =

(

q if q + r < 2

n

q + 1 if q + r � 2

n

and

(ab mod 2

n

) =

(

q + r if q + r < 2

n

q + r � 2

n

if q + r � 2

n

:

Thus

r =

(

(ab mod 2

n

)� (ab div 2

n

) if q + r < 2

n

(ab mod 2

n

)� (ab div 2

n

) + 2

n

+ 1 if q + r � 2

n

:

But q+ r < 2

n

if and only if (ab mod 2

n

) � (ab div 2

n

): This proves the Lemma. 2

Remark. There are of course other ways to compute the operation

J

. For exam-

ple, based on the fact that

x � y = �

(log

�

(x)+log

�

(y) mod 2

n

)

mod (2

n

+ 1)

for all x and y in ZZ

�

2

n

+1

where � is a generator of the cyclic group ZZ

�

2

n

+1

, one can

compute

J

by using + together with look-up tables for computing log

�

(�) and �

(�)

.

For small n, i.e., for n = 2; 4 or 8, this is more e�cient than the Low-High algorithm.

However, for n = 16, this method requires more memory. More details can be found

in [10].

3.4.3 C-program of IDEA cipher and sample data

/* C - program of block cipher IDEA */

#include <stdio.h>

define maxim 65537

define fuyi 65536

define one 65535

define round 8

void cip(unsigned IN[5],unsigned OUT[5],unsigned Z[7][10]);

void key(short unsigned uskey[9],unsigned Z[7][10]);

void de_key(unsigned Z[7][10],unsigned DK[7][10]);

unsigned inv(unsigned xin);

unsigned mul(unsigned a, unsigned b);

main()

{

int i, j, k, x;

unsigned Z[7][10], DK[7][10], XX[5],TT[5], YY[5];

short unsigned uskey[9];

for(i=1; i<=8; i++) uskey[i]= i;

key(uskey,Z); /* generate encryption subkeys Z[i][r] */

3.4. IMPLEMENTATIONS OF THE CIPHER 37

printf("\n encryption keys Z1 Z2 Z3 Z4 Z5 Z6");

for(j=1; j<=9; j++) { printf("\n %3d-th round ", j);

if (j==9) for(i=1; i<=4; i++) printf(" %6d",Z[i][j]);

else for(i=1; i<=6; i++) printf(" %6d",Z[i][j]);

}

de_key(Z,DK); /* compute decryption subkeys DK[i][r] */

printf("\n \n decryption keys DK1 DK2 DK3 DK4 DK5 DK6 ");

for(j=1; j<=9; j++) { printf("\n %3d-th round ", j);

if (j==9) for(i=1; i<=4; i++) printf(" %6d",DK[i][j]);

else for(i=1; i<=6; i++) printf(" %6d",DK[i][j]);

}

for (x=1; x<=4; x++) XX[x]=x-1;

printf("\n \n plaintext X %6u %6u %6u %6u \n",

XX[1], XX[2], XX[3], XX[4]);

cip(XX,YY,Z); /* encipher XX to YY with key Z */

printf("\n \n ciphertext Y %6u %6u %6u %6u \n",

YY[1], YY[2], YY[3], YY[4]);

cip(YY,TT,DK); /* decipher YY to TT with key DK */

printf("\n \n result T %6u %6u %6u %6u \n",

TT[1], TT[2], TT[3], TT[4]);

}

/* encryption algorithm */

void cip(unsigned IN[5],unsigned OUT[5],unsigned Z[7][10])

{

unsigned int r, x1,x2,x3,x4,kk,t1,t2,a;

x1=IN[1]; x2=IN[2]; x3= IN[3]; x4=IN[4];

for (r= 1; r<= 8; r++) /* the round function */

{

/* the group operation on 64-bits block */

x1 =mul(x1,Z[1][r]); x4 =mul(x4,Z[4][r]);

x2 =(x2 + Z[2][r]) & one; x3 =(x3 + Z[3][r]) & one;

/* the function of the MA structure */

kk = mul(Z[5][r], (x1^x3));

t1 = mul(Z[6][r], (kk + (x2^x4))& one);

t2 = (kk + t1) & one;

/* the involutary permutation PI */

x1 = x1^t1; x4 = x4^t2;

a = x2^t2; x2 = x3^t1; x3 = a;

printf("\n %1u-th rnd %6u %6u %6u %6u ", r, x1, x2, x3, x4);

}

/* the output transformation */

OUT[1] = mul(x1,Z[1][round+1]);

OUT[4] = mul(x4,Z[4][round+1]);

OUT[2] = (x3 + Z[2][round +1])& one;

OUT[3] = (x2 + Z[3][round+1]) & one;

}

38 CH. 3. THE BLOCK CIPHER IDEA

/* multiplication using the Low-High algorithm */

unsigned mul(unsigned a, unsigned b)

{

long int p;

long unsigned q;

if (a==0) p = maxim-b;

else if (b==0) p = maxim-a; else

{ q=(unsigned long)a*(unsigned long)b;

p=(q & one) - (q>>16); if (p<=0) p= p+maxim;

}

return (unsigned)(p & one);

}

/* compute inverse of xin by Euclidean gcd alg. */

unsigned inv(unsigned xin)

{ long n1,n2,q,r,b1,b2,t;

if (xin == 0) b2 = 0;

else

{ n1=maxim; n2 = xin; b2= 1; b1= 0;

do { r = (n1 % n2); q = (n1-r)/n2 ;

if (r== 0) {if (b2<0) b2 = maxim+b2; }

else { n1= n2; n2= r; t = b2; b2= b1- q*b2; b1= t; }

} while (r != 0);

}

return (unsigned)b2;

}

/* generate encryption subkeys Z's */

void key(short unsigned uskey[9], unsigned Z[7][10])

{

short unsigned S[54];

int i,j,r;

for (i = 1; i<9; i++) S[i-1] = uskey[i];

/* shifts */

for (i = 8; i< 54; i++)

{

if ((i+2)%8 == 0) /* for S[14],S[22],.. */

S[i] = ((S[i-7] <<9)^(S[i-14] >>7)) & one;

else if ((i+1)%8 ==0) /* for S[15],S[23],.. */

S[i] =((S[i-15] <<9)^(S[i-14] >>7)) & one ;

else

S[i] = ((S[i-7] <<9)^(S[i-6] >>7)) & one;

}

/* get subkeys */

for (r= 1; r<=round+1; r++) for(j= 1;j<7; j++)

Z[j][r] = S[6*(r-1) + j-1];

}

3.4. IMPLEMENTATIONS OF THE CIPHER 39

/* compute decryption subkeys DK's */

void de_key(unsigned Z[7][10],unsigned DK[7][10])

{

int j;

for (j = 1; j<=round+1; j++)

{ DK[1][round-j+2] = inv(Z[1][j]);

DK[4][round-j+2] = inv(Z[4][j]);

if (j==1 || j==round+1){

DK[2][round-j+2] = (fuyi-Z[2][j]) & one;

DK[3][round-j+2] = (fuyi-Z[3][j]) & one;

}

else {

DK[2][round-j+2] = (fuyi-Z[3][j]) & one;

DK[3][round-j+2] = (fuyi-Z[2][j]) & one;

}

}

for (j= 1;j<=round+1;j++)

{ DK[5][round+1-j] = Z[5][j]; DK[6][round+1-j] = Z[6][j];}

}

Sample Data. All the numbers are 16-bit integers with the leftmost bit being the most

signi�cant bit.

encryption keys Z1 Z2 Z3 Z4 Z5 Z6

1-th round 1 2 3 4 5 6

2-th round 7 8 1024 1536 2048 2560

3-th round 3072 3584 4096 512 16 20

4-th round 24 28 32 4 8 12

5-th round 10240 12288 14336 16384 2048 4096

6-th round 6144 8192 112 128 16 32

7-th round 48 64 80 96 0 8192

8-th round 16384 24576 32768 40960 49152 57345

9-th round 128 192 256 320

decryption keys DK1 DK2 DK3 DK4 DK5 DK6

1-th round 65025 65344 65280 26010 49152 57345

2-th round 65533 32768 40960 52428 0 8192

3-th round 42326 65456 65472 21163 16 32

4-th round 21835 65424 57344 65025 2048 4096

5-th round 13101 51200 53248 65533 8 12

6-th round 19115 65504 65508 49153 16 20

7-th round 43670 61440 61952 65409 2048 2560

8-th round 18725 64512 65528 21803 5 6

9-th round 1 65534 65533 49153

40 CH. 3. THE BLOCK CIPHER IDEA

plaintext X 0 1 2 3

after

1-th rnd 240 245 266 261

2-th rnd 8751 8629 62558 59737

3-th rnd 3974 14782 36584 4467

4-th rnd 22495 44120 50779 47693

5-th rnd 36481 47772 63359 14922

6-th rnd 26946 37897 57883 7268

7-th rnd 39376 51190 21297 25102

8-th rnd 2596 152 60523 18725

ciphertext Y 4603 60715 408 28133

after

1-th rnd 55693 54065 10230 33464

2-th rnd 48205 57963 37961 42358

3-th rnd 2724 63471 55964 9443

4-th rnd 51782 65115 56408 4461

5-th rnd 29839 36616 14810 17868

6-th rnd 12902 1118 12213 45102

7-th rnd 1680 1290 253 7674

8-th rnd 0 5 3 12

result T 0 1 2 3

